Exceliance - ALOHA Load-Balancer

Blue arrows: TCP connections Green arrows: IP address changes

	Green arrows: IP address changes					
Name	Presentation	Flow	Pros	Cons	Usage	
Layer7 Reverse Proxy	 The Load-Balancer acts as a Reverse-Proxy between the client and the server. Two TCP connections are established: 1. One between the client and the Load-Balancer 2. One between the Load-Balancer and the server 	Src: service VIP Dst: service VIP Src: service VIP Dst: client IP Dst: client IP Dst: client IP Dst: server IP Dst: server IP Dst: server IP Dst: server IP Dst: server IP	 non intrusive improve security allows protocol inspection and validation clients and servers can be in the same subnet/vlan 	 servers don't know the client IP address at TCP layer limited to hundred of thousands of connections bandwidth limited by Loadbalancer capacity 	 application layer advanced features SSL offloading improve application protection very simple deployment 	
Layer7 Transparent Proxy	The Load-Balancer acts as a Reverse-Proxy between the client and the server. Two TCP connections are established: 1. One between the client and the Load-Balancer 2. One between the Load-Balancer and the server The Load-Balancer spoofs the client IP address when establishing the TCP connection to the server.	Src: client IP Dst: service VIP Src: service VIP Dst: client IP Dst: client IP Dst: client IP Dst: client IP Dst: client IP	 improve security allows protocol inspection and validation servers know the client IP at TCP layer 	 intrusive: the traffic from the server to the client must pass through the Load-Balancer clients and servers can't be in the same subnet/vlan takes more resources than L4 modes bandwidth limited by Load-balancer capacity 	 application layer advanced features SSL offloading improve application protection client IP address mandatory at TCP layer 	
Layer4 Destination NAT	In Destination NAT mode, the Load-balancer forwards packets between clients and servers by changing the destination IP address of each packets. The TCP connection is established directly between the client and the server .	Src: client IP Dst: service VIP ALOHA Src: service VIP Dst: client IP Dst: server IP Dst: client IP Dst: client IP	 fast load-balancing servers know the client IP address at the TCP layer allows millions of connec- tions 	 intrusive: the traffic from the server to the client must pass through the Load-Balancer clients and servers can't be in the same subnet/vlan bandwidth limited by Load-balancer capacity 	 when response time matters when nothing but the default gateway of the servers can be changed 	
Layer4 Full NAT	In full NAT mode, the Load-Balancer forwards packets between clients and servers by changing both source IP and destination IP address of each packet. The TCP connection is established directly between a client and a server.	Src: client IP Dst: service VIP Src: service VIP Dst: client IP Dst: server IP Src: server IP Dst: client IP Dst: server IP Dst: server IP Dst: server IP	 fast load-balancing non intrusive clients and servers can be in the same sub- net/vlan 	 servers don't know the client IP address at the TCP layer bandwidth limited by Load- Balancer capacity 	 when response time matters very simple deployment 	
Layer4 DSR or gateway	DSR stands for Direct Server Return In DSR mode, the Load-Balancer forwards packets to the servers without changing anything in it but the destination MAC address: the new MAC address is server one. Two asymmetric flows happen: 1. Inbound: client ==> Load-Balancer ==> Server 2. Outbound: server ==> client The servers must have the service IP configured on a loopback to be able to accept the requests.	Src: client IP Dst: service VIP ALOHA Src: client IP Dst: service VIP Dst: service VIP Dst: service VIP Dst: service VIP Dst: service VIP	 fast load-balancing allows millions of connections allows huge outbound bandwidth servers know the client IP address at the TCP layer clients and servers can be in the same subnet/vlan 	 intrusive: service IP must be configured on a loopback in each server The Load-Balancer must have an interface in the server vlan 	 when response time matters when bandwidth matters 	
Layer4 IP Tunnel	The IP tunnel mode looks like the DSR mode, except that traffic between the load-balancer and the server can be routed. The load-balancer encapsulates the client packet in an IP tunnel established with the server. Two asymmetric flows happen: 1. Inbound: client ==> Load-Balancer ==> Server 2. Outbound: server ==> client The servers must have the service IP configured on a loopback to be able to accept the requests.	Src: client IP Dst: service VIP Src: client IP Dst: service VIP Client packet encapsulated	 fast load-balancing allows millions of connections servers know the client IP address at the TCP layer clients and servers can be in the same subnet/vlan 	 intrusive: an IP tunnel must be setup between the Load-Balancer and the server intrusive: service IP must be configured on a loopback in each server The Load-Balancer must have an interface in the server vlan 	 when response time matters when bandwidth matters when the load-balancer can't have an interface in the server vlan 	
Layer4 / Layer7 Transparent listen- ing	This mode is also known as VIPless. The service IP is not configured on the Load-Balancer itself, but it is routed by the routers to the Load-Balancer. The Load-Balancer will match traffic on the fly, applying any of the Load- Balancing rules. It is compatible with all modes above.		 affect only client to Load-Balancer traffic A single vrrp IP address per Load-Balancer cluster is required, whatever the number of service IP it hosts adding new service IPs means adding a route on the core routers the Load-Balancer can be hidden and unreachable from internet while load-balancing 	 requires networking skills the service IP address can't be pinged since not configured any- where 	• when a huge number of service IP is required	

