HTTP protocol is connection-less and only the client can request information from a server. In any case, a server can contact a client. HTTP is purely half-duplex. Furthermore, a server can answer only one time to a client request.
Some websites or web applications require the server to update client from time to time. There were a few ways to do so:

  • the client request the server at a regular interval to check if there is a new information available

  • the client send a request to the server, and the server answers as soon as he has an information to provide to the client (also known as long time polling)

But those methods have many drawbacks due to HTTP limitation.

So a new protocol has been designed: websockets, which allows a two ways communication (full duplex) between a client and a server over a single TCP connection. Furthermore, websockets re-use the HTTP connection it was initialized on, which means it uses the standard TCP port.

How Does a Websocket Work?

Basically, a websocket start with a HTTP request like the one below:

GET / HTTP/1.1
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Version: 13
Sec-WebSocket-Key: avkFOZvLE0gZTtEyrZPolA==
Host: localhost:8080
Sec-WebSocket-Protocol: echo-protocol

The most important part is the “Connection: Upgrade” header, which let the client know to the server it wants to change to an other protocol, whose name is provided by “Upgrade: websocket” header.

When a server with websocket capability receive the request above, it would answer a response like below:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: tD0l5WXr+s0lqKRayF9ABifcpzY=
Sec-WebSocket-Protocol: echo-protocol

The most important part is the status code 101, which acknowledge the protocol switch (from HTTP to websocket) as well as the “Connection: Upgrade” and “Upgrade: websocket” headers.

From now, the TCP connection used for the HTTP request/response challenge is used for the websocket: whenever a peer wants to interact with the other peer, it can use the it.

The socket finishes when one peer decides it, or the TCP connection is closed.

Related Blog: How Does a Load Balancer Work?

HAProxy & Websockets

As seen above, there are two protocols embedded in websockets:

  1. HTTP: for the websocket setup

  2. TCP: websocket data exchange

HAProxy must be able to support websockets on these two protocols without breaking the TCP connection at any time.


There are two things to take care of:

  1. being able to switch a connection from HTTP to TCP without breaking it

  2. smartly manage timeouts for both protocols at the same time

Fortunately, HAProxy embeds all you need to load-balance properly websockets and can meet the 2 requirements above.
It can even route regular HTTP traffic from websocket traffic to different backends and perform websocket aware health check (setup phase only).

The diagram below shows how things happens and HAProxy timeouts involved in each phase:

diagram_websocket1

During the setup phase, HAProxy can work in HTTP mode, processing layer 7 information. It automatically detects the Connection: Upgrade exchange and is ready to switch to tunnel mode if the upgrade negotiation succeeds. During this phase, there are three timeouts involved:

  1. timeout client: client inactivity

  2. timeout connect: allowed TCP connection establishment time

  3. timeout server: allowed time to the server to process the request

If everything goes well, the websocket is established, then HAProxy fails over to tunnel mode, no data is analyzed anymore (and anyway, websocket does not speak HTTP). There is a single timeout involved:

  1. timeout tunnel: take precedence over client and server timeout

  2. timeout connect is not used since the TCP connection is already established 🙂

Testing Websocket with node.js

node.js is a platform which can host applications. It owns a websocket module we’ll use in the test below.

Here is the procedure to install node.js and the websocket module on Debian Squeeze.
Example code is issued from https://github.com/Worlize/WebSocket-Node, at the bottom of the page.

So basically, I’ll have two servers, each one hosting web pages on Apache and an echo application on websocket application hosted by nodejs. High-availability and routing is managed by HAProxy.

Configuration

Simple Configuration

In this configuration, the websocket and the web server are on the same application.
HAProxy
 switches automatically from HTTP to tunnel mode when the client request a websocket.

defaults
  mode http
  log global
  option httplog
  option  http-server-close
  option  dontlognull
  option  redispatch
  option  contstats
  retries 3
  backlog 10000
  timeout client          25s
  timeout connect          5s
  timeout server          25s
# timeout tunnel available in ALOHA 5.5 or HAProxy 1.5-dev10 and higher
  timeout tunnel        3600s
  timeout http-keep-alive  1s
  timeout http-request    15s
  timeout queue           30s
  timeout tarpit          60s
  default-server inter 3s rise 2 fall 3
  option forwardfor

frontend ft_web
  bind 192.168.10.3:80 name http
  maxconn 10000
  default_backend bk_web

backend bk_web                      
  balance roundrobin
  server websrv1 192.168.10.11:8080 maxconn 10000 weight 10 cookie websrv1 check
  server websrv2 192.168.10.12:8080 maxconn 10000 weight 10 cookie websrv2 check

Advanced Configuration

The configuration below allows to route requests based on either Host header (if you have a dedicated host for your websocket calls) or Connection and Upgrade header (required to switch to websocket).
In the backend dedicated to websocket, HAProxy validates the setup phase and ensures the user is requesting a right application name.
HAProxy also performs a websocket health check, sending a Connection upgrade request and expecting a 101 response status code. We can’t go further for now on the health check for now.
Optional: the web server is hosted on Apache but could be hosted by node.js as well.,

defaults
  mode http
  log global
  option httplog
  option  http-server-close
  option  dontlognull
  option  redispatch
  option  contstats
  retries 3
  backlog 10000
  timeout client          25s
  timeout connect          5s
  timeout server          25s
# timeout tunnel available in ALOHA 5.5 or HAProxy 1.5-dev10 and higher
  timeout tunnel        3600s
  timeout http-keep-alive  1s
  timeout http-request    15s
  timeout queue           30s
  timeout tarpit          60s
  default-server inter 3s rise 2 fall 3
  option forwardfor



frontend ft_web
  bind 192.168.10.3:80 name http
  maxconn 60000

## routing based on Host header
  acl host_ws hdr_beg(Host) -i ws.
  use_backend bk_ws if host_ws

## routing based on websocket protocol header
  acl hdr_connection_upgrade hdr(Connection)  -i upgrade
  acl hdr_upgrade_websocket  hdr(Upgrade)     -i websocket

  use_backend bk_ws if hdr_connection_upgrade hdr_upgrade_websocket
  default_backend bk_web



backend bk_web                                                   
  balance roundrobin                                             
  option httpchk HEAD /                                          
  server websrv1 192.168.10.11:80 maxconn 100 weight 10 cookie websrv1 check
  server websrv2 192.168.10.12:80 maxconn 100 weight 10 cookie websrv2 check



backend bk_ws                                                    
  balance roundrobin

## websocket protocol validation
  acl hdr_connection_upgrade hdr(Connection)                 -i upgrade
  acl hdr_upgrade_websocket  hdr(Upgrade)                    -i websocket
  acl hdr_websocket_key      hdr_cnt(Sec-WebSocket-Key)      eq 1
  acl hdr_websocket_version  hdr_cnt(Sec-WebSocket-Version)  eq 1
  http-request deny if ! hdr_connection_upgrade ! hdr_upgrade_websocket ! hdr_w
ebsocket_key ! hdr_websocket_version

## ensure our application protocol name is valid 
## (don't forget to update the list each time you publish new applications)
  acl ws_valid_protocol hdr(Sec-WebSocket-Protocol) echo-protocol
  http-request deny if ! ws_valid_protocol

## websocket health checking
  option httpchk GET / HTTP/1.1rnHost:\ ws.domain.comrnConnection:\ Upgrade\r\nUpgrade:\ websocket\r\nSec-WebSocket-Key:\ haproxy\r\nSec-WebSocket-Version:\ 13\r\nSec-WebSocket-Protocol:\ echo-protocol
  http-check expect status 101

  server websrv1 192.168.10.11:8080 maxconn 30000 weight 10 cookie websrv1 check
  server websrv2 192.168.10.12:8080 maxconn 30000 weight 10 cookie websrv2 check

Note that HAProxy could also be used to select different Websocket application based on the Sec-WebSocket-Protocol header of the setup phase.

Conclusion

In this blog post you learned all about websocket and why to use it, as well as how HAProxy can handle all your load balancing needs with websockets.

HAProxy Enterprise combines HAProxy Community, the world’s fastest and most widely used open-source load balancer and application delivery controller, with enterprise-class features, services and premium support. It is a powerful product tailored to the goals, requirements and infrastructure of modern IT. HAProxy ALOHA is a plug-and-play hardware or virtual load balancer based on HAProxy Enterprise that supports proxying at Layer 4 and Layer 7.

Contact us to learn more and sign up for a free HAProxy Enterprise Trial or HAProxy ALOHA Virtual Trial. If you enjoyed this post and want to see more like it, subscribe to our blog! You can also follow us on Twitter and join the conversation on Slack.

Subscribe to our blog. Get the latest release updates, tutorials, and deep-dives from HAProxy experts.